Win Expectancy Chart for MLS
This chart is from the perspective of the home team, constructed from game data covering the 2011 - 2015 seasons. There is no control for team ability, and please be aware of small sample sizes in certain gamestates (depicted by "Games" column).
Use Minute 0 and Gamestate 0 to see the typical home advantages over the whole game.
Goal differential (GD/96) and Expected Goal Differential (xGD/96) are both per 96 minutes, the average length of an MLS game.
As an example of how to read the chart, in the 209 games where the home team has found itself down a goal after the 90th minute, it has won just twice (2/209 = 1.0%), tied 26 times (26/209 = 12.4%), and lost the rest. During these times, the home team also ramps up the intensity, more than quintupling its typical xGD and GD rates.
Minute | Gamestate | Games | WinPct | TiePct | LossPct | GD/96 | xGD/96 |
---|---|---|---|---|---|---|---|
15 | -2 | 14 | 0.000 | 0.143 | 0.857 | -0.17 | 0.39 |
30 | -2 | 36 | 0.056 | 0.139 | 0.806 | -0.04 | 0.64 |
45 | -2 | 52 | 0.019 | 0.135 | 0.846 | -0.07 | 0.67 |
60 | -2 | 70 | 0.014 | 0.157 | 0.829 | 0.44 | 1.07 |
75 | -2 | 75 | 0.000 | 0.067 | 0.933 | 0.20 | 0.93 |
90 | -2 | 76 | 0.000 | 0.013 | 0.987 | -0.63 | 2.21 |
15 | -1 | 128 | 0.297 | 0.203 | 0.500 | 0.56 | 0.65 |
30 | -1 | 207 | 0.266 | 0.280 | 0.454 | 0.83 | 0.71 |
45 | -1 | 245 | 0.180 | 0.322 | 0.498 | 0.91 | 0.83 |
60 | -1 | 242 | 0.107 | 0.314 | 0.579 | 0.83 | 0.93 |
75 | -1 | 226 | 0.049 | 0.274 | 0.677 | 1.12 | 1.28 |
90 | -1 | 209 | 0.010 | 0.124 | 0.866 | 2.76 | 2.83 |
0 | 0 | 1391 | 0.483 | 0.281 | 0.236 | 0.46 | 0.38 |
15 | 0 | 1024 | 0.452 | 0.315 | 0.232 | 0.49 | 0.41 |
30 | 0 | 768 | 0.428 | 0.339 | 0.233 | 0.52 | 0.45 |
45 | 0 | 621 | 0.414 | 0.370 | 0.216 | 0.56 | 0.44 |
60 | 0 | 500 | 0.358 | 0.442 | 0.200 | 0.66 | 0.50 |
75 | 0 | 436 | 0.259 | 0.594 | 0.147 | 0.71 | 0.57 |
90 | 0 | 405 | 0.089 | 0.847 | 0.064 | 0.36 | 0.84 |
15 | 1 | 207 | 0.749 | 0.184 | 0.068 | 0.44 | 0.15 |
30 | 1 | 313 | 0.725 | 0.204 | 0.070 | 0.36 | 0.17 |
45 | 1 | 333 | 0.745 | 0.198 | 0.057 | 0.44 | 0.12 |
60 | 1 | 360 | 0.758 | 0.206 | 0.036 | 0.36 | 0.10 |
75 | 1 | 374 | 0.818 | 0.163 | 0.019 | 0.18 | -0.10 |
90 | 1 | 368 | 0.940 | 0.057 | 0.003 | 0.98 | -0.69 |
15 | 2 | 18 | 0.889 | 0.111 | 0.000 | 0.13 | 0.06 |
30 | 2 | 55 | 0.891 | 0.073 | 0.036 | 0.34 | 0.01 |
45 | 2 | 109 | 0.908 | 0.073 | 0.018 | 0.35 | 0.09 |
60 | 2 | 153 | 0.935 | 0.059 | 0.007 | 0.11 | -0.13 |
75 | 2 | 157 | 0.962 | 0.025 | 0.013 | 0.35 | -0.12 |
90 | 2 | 170 | 1.000 | 0.000 | 0.000 | 1.55 | 0.22 |
30 | 3 | 10 | 1.000 | 0.000 | 0.000 | -0.73 | -0.21 |
45 | 3 | 16 | 1.000 | 0.000 | 0.000 | -0.59 | -0.05 |
60 | 3 | 44 | 1.000 | 0.000 | 0.000 | -0.06 | 0.21 |
75 | 3 | 77 | 1.000 | 0.000 | 0.000 | 0.33 | 0.24 |
90 | 3 | 87 | 1.000 | 0.000 | 0.000 | 3.03 | 0.67 |